
Agile Continuous Jumping in Discontinuous Terrains

Yuxiang Yang1, Guanya Shi2, Changyi Lin2, Xiangyun Meng1, Rosario Scalise1, Mateo Guaman Castro1,
Wenhao Yu3, Tingnan Zhang3, Ding Zhao2, Jie Tan3, and Byron Boots1

1University of Washington 2Carnegie Mellon University 3Google Deepmind

Abstract— We focus on agile, continuous, and terrain-
adaptive jumping of quadrupedal robots in discontinuous
terrains such as stairs and stepping stones. Unlike single-step
jumping, continuous jumping requires accurately executing
highly dynamic motions over long horizons, which is challenging
for existing approaches. To accomplish this task, we design a
hierarchical learning and control framework, which consists of
a learned heightmap predictor for robust terrain perception, a
reinforcement-learning-based centroidal-level motion policy for
versatile and terrain-adaptive planning, and a low-level model-
based leg controller for accurate motion tracking. In addition,
we minimize the sim-to-real gap by accurately modeling the
hardware characteristics. Our framework enables a Unitree
Go1 robot to perform agile and continuous jumps on human-
sized stairs and sparse stepping stones, for the first time to
the best of our knowledge. In particular, the robot can cross
two stair steps in each jump and completes a 3.5m long,
2.8m high, 14-step staircase in 4.5 seconds. Moreover, the
same policy outperforms baselines in various other parkour
tasks, such as jumping over single horizontal or vertical
discontinuities. Experiment videos can be found at https:
//yxyang.github.io/jumping_cod/.

I. INTRODUCTION

Achieving animal-level agility has long been a coveted
goal in legged locomotion research. As a notable example,
quadrupedal animals can traverse challenging terrains at high
speeds with continuous jumping and precise foot placement.
Such jumping is particularly effective on discontinuous ter-
rains like stairs and stepping stones, which is often non-
traversable using the standard walking gait. Inspired by
this observation, researchers have made significant efforts to
reproduce this agile jumping behavior in quadrupedal robots,
including building high-performance robot platforms [1, 2, 3,
4], designing long-distance jumping controllers [5, 6, 7, 8],
and learning rapid hand-eye coordination [9, 10, 11, 12].
However, achieving continuous, long-distance, and terrain-
adaptive jumping remains a challenging task.

While continuous, terrain-aware jumping has been studied
in simulation [13, 14], transferring this behavior to the
real world remains difficult, and reflects many fundamental
challenges in robot agility. The first challenge is perception.
Despite recent progress, end-to-end learning-based methods
[15, 9, 10, 12] still face a large sim-to-real gap, especially
for high-speed motions with significant camera oscillations.
The second challenge is motion accuracy. Unlike single-
step jumping, continuous jumping requires the robot to link

1 {yuxiangy, xiangyun, rosario, mateogc, bboots}@
cs.washington.edu

2 {guanyas, changyil, dingzhao}@andrew.cmu.edu
3 {magicmelon, tingnan, jietan}@google.com

Fig. 1: Our framework enables a quadrupedal robot to jump
continuously over real-world stairs and steps.

consecutive jumps with carefully planned body and foot
motions, and accurately track these poses against unexpected
perturbations. Despite recent results in high-performance
single-step jumping [9, 10, 12], most of these frameworks
usually cannot maintain an accurate landing pose, making
it difficult to extend from single-step to continuous jump-
ing. The last challenge is simulation fidelity. While domain
randomization (DR) [16, 17] can bridge small dynamics mis-
matches between simulation and the real world, it often falls
short when the robot operates close to the hardware limit,
which is common in agile, continuous jumping. Because
of these challenges, achieving high-speed jumping on real-
world discontinuous terrains remains a difficult task.

In this work, we present a hierarchical framework [18] for
agile, continuous, and terrain-aware jumping that addresses
all these challenges. Our framework consists of a learned
heightmap predictor for terrain perception, a reinforcement
learning (RL)-trained motion policy for motion planning, and
a model-based leg controller for motion tracking. Unlike end-
to-end, pixel-to-action approaches [9, 10], we choose the
sagittal-plane heightmap as the intermediate representation,
which improves the robustness and interpretability of terrain
perception. As the robot jumps forward, the heightmap
predictor reconstructs this heightmap from onboard depth
images. Based on this heightmap, the motion policy plans
body and foot motions, which is tracked by the leg controller.
To ensure consistent landing between jumps, we train the
motion policy with an extra reward for accurate motion plan-



ning, and use a mixture of feedforward and feedback terms
in the leg controller for robust motion tracking. To improve
simulation fidelity, we identify and reproduce key hardware
characteristics in simulation, including camera delay and
motor saturations. Combining these efforts, our framework
achieves animal-like agile continuous jumping on stairs and
stepping stones for the first time.

We conduct extensive real-robot experiments on a Unitree
Go1 robot [4] to validate the effectiveness of our framework
(Fig. 1). With the continuous jumping gait, our robot jumps
over a human-sized, 14-step staircase in less than 4.5 sec-
onds, traversing 2 stair steps in each jump with an average
horizontal speed of 0.8m/s and vertical speed of 0.6m/s. This
speed is more than 2 times faster than the standard walking
gait (Table. I). To the best of our knowledge, this is the first
time any quadrupedal robot has achieved such high-speed
animal-like traversal on similar staircases. In addition to stair
jumping, our framework also learns to jump continuously
on horizontal stepping stones, and achieves state-of-the-art
performance in single-step jumps up to 80cm (2ˆ body
length) horizontally and 60cm (2.4ˆ body height) vertically
[10, 9]. We further conduct an ablation study to validate
important design choices.

In summary, our contributions in this paper are as follows:
1) We present a hierarchical framework for quadrupedal

jumping with direct perception input.
2) We develop a robust training pipeline that learns ver-

satile jumping skills with minimal sim-to-real gap.
3) Our framework achieves agile continuous jumps in

real-world discontinuous terrains for the first time.

II. RELATED WORK

A. Optimal Control for Dynamic Legged Locomotion

Researchers have had a long history building optimal-
control based controllers for dynamic quadrupedal loco-
motion [19, 20, 21, 22, 23]. By optimizing for control
outputs at high frequency, these controllers can accurately
track the reference trajectory, even for high-speed motions
like running [19], galloping [20] or jumping [20, 24, 25].
However, due to the constraint of real-time control, these
frameworks are typically confined to a short plan horizon,
and require additional effort in offline trajectory optimization
[7, 8, 26, 6], dynamics model simplification [5, 27, 28],
and optimal control relaxation [28] to plan for complex,
long-horizon jumps. Another bottleneck of these frameworks
is perception, which not only requires extra computation
resource to process the perception signals, but also increases
the complexity of the optimal control problem, making it
more difficult to solve in real-time [29, 30]. Using manually-
designed terrain perception and motion adaptation, Park et al.
[31] achieved bounding over fixed-shape hurdles on an MIT
Cheetah 2 Robot. More recently, by classifying step feasi-
bility and formulating it into foot placement optimization,
Grandia et al. [32] achieved low-speed walking on uneven
stepping stones on an Anymal robot. In this work, we use an
optimal controller for robust low-level motion tracking, but

introduce learning-based perception and motion planning for
real-time replanning of complex jumping motions.

B. Learning Perceptive Locomotion

Recently, learning-based approaches emerge as a promis-
ing alternative for dynamic, terrain-adaptive quadrupedal
locomotion [33, 34, 17, 35, 10, 9, 36, 37]. The core idea is to
construct an end-to-end policy that directly maps from per-
ceptual and proprioceptive inputs to motor actions, and train
the policy using reinforcement learning, usually in simulation
[38]. These approaches have enabled legged robots to walk
[15] and jump [10, 9, 12, 11] dynamically on challenging
terrains such as mountain trails [39] and stepping stones [40].
Despite their success, these frameworks tend to be less robust
on highly dynamic tasks, and face even more challenges
on continuous jumping, which requires accurate motion
planning and tracking. Unlike these end-to-end approaches,
we decompose our pipeline into perception, motion planning,
and motion tracking, with interpretable intermediate outputs
and robust real-world jumping performance.

C. Hierarchical Frameworks

Hierarchical frameworks offer a promising alternative that
combines the benefit of learning-based and optimal-control-
based controllers. By combining a high-level learned policy
with a low-level motor controller [41, 42, 43, 44, 18, 45, 46],
these frameworks can learn robust and generalizable loco-
motion behaviors with versatile gait selection [42, 44], foot
placement [43, 18, 41] and body motion planning [43, 18].
In our prior work [18], we addressed the computational bot-
tleneck of hierarchical frameworks and achieved continuous
forward jumping on flat terrains. In this work, we extend
the prior framework with perception, and achieve terrain-
adaptive jumping in both forward and upward directions.

III. HIERARCHICAL PERCEPTIVE JUMPING FRAMEWORK

To achieve high-speed, terrain-aware, continuous jumping
on the real robot, we design a hierarchical learning-control
framework with separate modules for perception, motion
planning, and motion tracking (Fig. 2). At the perception
level, a heightmap predictor receives depth images from the
onboard depth camera, and estimates a heightmap in the
front-back axis of the robot. Based on this heightmap, a
motion policy plans the reference robot motions, including
the gait frequency f , the swing foot residuals pr, and the
desired body velocity vx, vz, vθ. This reference motion is
then tracked by a low-level leg controller, which runs a gait
generator to determine the desired contact state of each leg,
and uses separate control strategies for swing and stance legs.
We run the motion policy and heightmap predictor at 100Hz
for stable policy output, and run the leg controller at 500Hz
for responsive torque control.

To train our framework, we first constructed a high-fidelity
simulation environment with carefully identified hardware
characteristics. Due to the high computation cost in depth
image rendering, we train our framework in two stages
[15, 9, 10]. In the first stage, we train the motion policy



Fig. 2: Our hierarchical learning-control framework consists of a heightmap predictor, a motion policy, and a low-level leg
controller. We use the heightmap as the intermediate representation for perception and motion planning (Section. IV), train
high-performance motion planning with reward to encourage accurate tracking (Section. V), and combine a feedforward and
a feedback controller for robust tracking of body orientations (Section. VI). In addition, we reduce the sim-to-real gap by
accurately identifying key hardware characteristics and reproducing them in simulation (Section. VII).

using reinforcement learning (RL), where the motion policy
receives heightmaps that are directly sampled from the
environment. In the second stage, we train the heightmap
predictor to estimate this heightmap from depth images.
Once the framework is trained, we deploy it to the real robot
without additional fine-tuning.

IV. HEIGHTMAP-CENTERED TERRAIN PERCEPTION

A robust and interpretable terrain understanding is critical
for continuous jumping in noisy real-world environments. In
our framework, we adopt the heightmap as the intermediate
representation between raw sensor data and motion planning.
The heightmap predictor estimates this heightmap from depth
images, while the motion policy uses it to plan body and
foot motions. This approach enhances the framework’s in-
terpretability and enables easy error isolation. Moreover, by
randomizing the heightmap during training, we improve the
motion policy’s robustness against real-world uncertainties.

A. Iterative Training for Heightmap Prediction

We design the heightmap predictor as a 3-layer convolu-
tional network followed by a 1-layer GRU, where the con-
volutional network extracts features from the depth images,
and the GRU reconstructs the heightmap from past mem-
ories. To ensure accurate heightmap reconstruction around
the trajectories that the robot is more likely to visit, we
train the heightmap predictor iteratively using supervised
learning, similar to DAgger [47]. The training loop alternates
between rolling out the trajectories using the latest heightmap
predictor and the motion policy, and training the heightmap
predictor on the trajectories collected.

B. Robust Perception with Heightmap Randomization

Due to camera occlusion and real-world sensor noises, it
can be difficult to accurately reconstruct the ground-truth
heightmap at all time. To make the motion policy aware of
this insufficiency, we randomly shift the observed heightmap

during policy training ([-8cm, 8cm] horizontally, and [-5cm,
5cm] vertically). This randomization improves the robustness
of the motion policy and prevents it from overfitting to
irrelevant details of the heightmap. More importantly, it
creates tolerance for inevitable heightmap reconstruction
errors during real-world operation.

V. LEARNING VERSATILE MOTION PLANNING

To learn versatile jumping skills in challenging terrains, we
train the motion policy using reinforcement learning, where
the environment consists of diverse terrains in a curriculum
of increasing difficulty. In addition, to ensure the feasibility
of planned motions, we include the motion tracking cost as
part of the reward during policy training.

A. Environment Setup

In our environment, the state space includes robot propri-
oception, gait timing, and the randomized terrain heightmap.
The action space includes the stepping frequency f for gait
progress, the swing foot residual pr, and the reference base
velocity vref

x , vref
z , ωref

y . We implement the environment and
the low-level controller on GPU, and solve an approximated
version of the optimal control problem [18] to speed up
training. During real-world deployment, we solve the exact
optimal control problem for extra robustness.

B. Motion Tracking Cost as Policy Reward

Note that not all motion references (vref
x , vref

z , ωref
y ) can

be accurately tracked by the leg controller. For example,
when only the front leg is in contact, the robot cannot
track a large vref

z and a large ωref
y at the same time, as the

prior requires jumping up with extended legs, and the later
requires tilting down with retracted legs. When facing such a
conflicting objective, the leg controller typically computes an
intermediate solution with large tracking errors. Moreover,
this solution can be highly sensitive to the current robot
state, leading to large sim-to-real gaps and unpredictable



Fig. 3: The environment consists of 4 terrain types.

Fig. 4: We adopt the bounding gait with 4 contact modes.
Red dot indicates foot contact.

real-world failures. To alleviate this issue, we include the
cost of the low-level optimal controler (Eq. 1) as part of the
reward during policy training, so that the policy learns to
plan feasible trajectories with small tracking errors. The rest
of the reward terms were adapted from our prior work [18],
which encourages the robot to follow the contact schedule
and jump over long distances.

C. Terrain Curriculum for Skill Training

To learn continuous jumping over complex terrains, we
design 4 terrain types in the training environment (Fig. 3)
with single and multiple discontinuities. Each terrain comes
with a curriculum of increasing difficulty. The robot starts
randomly in the easiest terrain at the beginning of training,
and advances to the next level after it learns to jump over a
sufficiently long distance in the current level [48].

VI. ACCURATE MOTION TRACKING WITH FEEDBACK

The leg controller tracks the motion references from the
motion policy with separate control strategies for swing and
stance legs. The switch between swing and stance legs is
modulated by a gait generator. For accurate tracking of the
body orientation changes, we combine a feedforward and a
feedback controller for stance legs.

A. Gait Generation and Swing Leg Control

To maximize the jumping distance, the gait generator
adopts the bounding gait with alternating foot contacts
(Fig. 4). The gait generator tracks the leg’s progress in each
bounding cycle with a phase variable ϕ P r0, 2πq, where
different values of ϕ correspond to different contact modes.
Given the stepping frequency f from the motion policy, the
gait generator advances the phase ϕ by 2πf and uses the
newly computed phase to determine swing and stance legs.
The swing leg controller receives the reference foot positions
as the sum of a nominal trajectory ps from the Raibert
heuristics [49], and a learned residual pr, converts the foot
position to joint position using inverse kinematics (IK), and
tracks this joint position using PD control.

B. Feed-forward Optimal Control

Given the reference base velocities vref
x , vref

z , ωref
y , the feed-

forward controller computes a reference CoM acceleration
aref P R6 via PD rule, and solves a quadratic program (QP)
to find the ground reaction forces (GRFs) f P R12. We set

0 1 2 3
Time/s

−1

0

1

An
g 

Ve
l/(

ra
d/

s)

Ang Vel-X

0 1 2 3
Time/s

−1

0

1

An
g 

Ve
l/(

ra
d/

s)

Ang Vel-Y
Reference FF Only FF+FB

Fig. 5: The feedback controller improves the tracking accu-
racy of body angular velocities.

the objective to track the reference acceleration aref with an
additional regularization term:

min
f

}a ´ aref}U ` }f}V (1)

where we compute the acceleration a via the linearized cen-
troidal dynamics model [19], and set U and V as diagonal
weight matrices. The constraints include the contact schedule
and friction cone constraints. Once the GRFs are optimized,
the controller then convert them into motor torques via
Jacobian transpose: τ “ JJf .

C. Feedback Velocity Tracking

While the feedforward (FF) controller can accurately track
trajectories with upright body poses, we find that it can-
not accurately track trajectories with large body orientation
changes (Fig. 5) due to unmodeled details in robot orientation
dynamics. For accurate trajectory tracking under all body
poses, we introduce a feedback (FB) controller [20, 22]
to compensate for this tracking error. This FB controller
computes the reference foot velocities from the reference
body velocities, and tracks it using joint PD control. Note
that the world frame position of a foot pW

foot can be expressed
in terms of its body frame position pB

foot as:

pW
foot “ pW

B ` RW
B pB

foot (2)

where pW
B is the body position in the world frame, and RW

B
is the body rotation matrix. Taking the derivative on both
sides, we can express the world-frame foot velocity vW

foot in
terms of the body-frame foot velocity vB

foot:

vW
foot “ vW

B ` ωW
B ˆ pB

foot ` RW
B vB

foot (3)

where vW
B ,ωW

B is the body linear and angular velocity in
the world frame. Assuming static foot contacts

`

vW
foot “ 0

˘

and that the body is moving at reference velocities, we
can express the reference body-frame foot velocities vB

foot
in terms of the reference body velocities.

vB
foot “ ´

`

RW
B

˘´1
pvref ` ωref ˆ pB

footq (4)

We then convert the reference foot velocities to the ref-
erence joint velocities via Jacobian inverse 9qref “ J´1vB

foot
and compute the feedback torques as τfb “ kfb

d p 9qref ´ 9qq. We
set kfb

d “ 1 to provide effective feedback while not causing
significant interference with the feedforward controller.

VII. HIGH-FIDELITY SIMULATION WITH REAL-TO-SIM

Sim-to-real is particularly challenging for highly dynamic
jumping tasks. While domain randomization (DR) can im-
prove the robustness of the policy, randomization of standard



Robot Style Stairs Stepping Stones Step Gap
(Max Speed) (Max Speed) (Max Height) (Max Width)

Egocentric-Vision[15] A1 Walking 0.46m/s 0.36m/s 0.26m (1ˆ) 0.17m (0.43ˆ)
Robot Parkour [10] A1 Jumping - - 0.4m (1.6ˆ) 0.6m (1.5ˆ)
Extreme Parkour [9] A1 Jumping - - 0.5m (2ˆ) 0.8m (2ˆ)

Ours Go1 Jumping 1m/s 1.4m/s 0.6m (2.4ˆ) 0.8m (2ˆ)

TABLE I: Performance comparison between our framework and baselines. Multiplier (ˆ) shows distance relative to body
dimensions (length or height).

10 20 30
Command / (Nm)

10

20

30

M
ea

su
re

d 
/ (

Nm
)

Ideal
Actual

(a) Torque Saturation.

0.0 0.5 1.0 1.5 2.0
Time/s

0.2

0.3

0.4

He
ig
ht
/m

Proprioception
Perception

(b) Camera Latency.
Fig. 6: We conduct individual studies to measure the motor
torque saturations (Fig. 6a) and camera latency (Fig. 6b).

simulation parameters may not capture the unique behavior
of real hardware, especially for highly dynamic tasks that
operate close to hardware limit. In this work, we design indi-
vidual experiments to carefully measure these characteristics,
and reproduce them to improve simulation fidelity.

a) Measuring Motor Saturation: Jumping over long
distances requires the robot to fully utilize its motor torque
outputs to generate the necessary foot forces. Assuming a
linear torque-current relationship, standard DC motors track
a torque command by tracking the current output. However,
at high torque commands, the torque-current relationship
tend to saturate, leading to insufficient torque output at
the desired current [16]. To accurately capture this torque
saturation, we measure the motor torque output at different
torque commands using a dynamometer (Fig. 6a). We then
reproduce this relationship in simulation using a piecewise
linear function, and convert all torque commands before
stepping the simulation [16].

b) Measuring Camera Latency: To rapidly respond to
terrain changes, its critical for the robot to understand any
latency in terrain perception. To measure this camera latency,
we execute sinusoidal body height motions on the real robot,
and compare the body height estimated from joint angles
using forward kinematics with the body height estimated
from the received depth images (Fig.6b). The perception-
based height estimation shows a consistent delay of about
50ms, or 5 environment steps. We subsequently implement
this delay in all depth image rendering in simulation.

VIII. RESULTS AND ANALYSIS

We design experiments to validate the performance of
our framework in agile jumping over discontinuous terrains.
More specifically, we aim to answer the following questions:

1) Can our framework jump over challenging discontinu-
ous terrains at high speed in the real world?

2) How does the jumping performance of our framework
compare with existing works?

3) Can our framework perform terrain-aware body and
foot-step planning?

4) What are the important design choices to facilitate
successful sim-to-real transfer?

A. Experimental Setup

We test our framework on the Unitree Go1 robot [4],
where we mounted a Intel Realsense D435i camera to capture
depth images, and stream the images to a Mac Mini computer
for policy inference. We build the simulation environment in
IsaacGym [38], and implemented the low-level leg controller
in PyTorch [50]. We train the motion policy for 8000 gradient
steps using Proximal Policy Optimization (PPO) [51], which
takes about 7 hours on a Nvidia RTX 4090 GPU. We train
the heightmap predictor for 30 DAgger steps where each
step collects 5000 state-action pairs. Training the heightmap
predictor takes about 1 hour on the same computer.

B. Continuous Jumping over Discontinuous Terrains

We deploy the trained framework in two real-world dis-
continuous terrains (Fig. 1 (a) (b)), including a staircase and a
stepping stone environment. The robot carefully coordinates
its body and foot motion and traverses through both terrains
at high speeds. In the first case, the robot completes the
14-step staircase in 4.5 seconds, with an average horizontal
speed of 0.8m/s and vertical speed of 0.6m/s. A closer look
at the jumping behavior reveals that the robot crosses the
entire 14-step stair cases in 8 jumps, with 2 stair steps per
jump most of the time. In the second case, we test the robot
on a stepping stone environment.The robot jumps across one
gap each time, and traverses the entire terrain in less than 2
seconds. To the best of our knowledge, this is the first time
a quadrupedal robot has demonstrated such agile continuous
jumping on these challenging terrains.

We compare the terrain traversal performance of our
framework with a few baselines in the first two columns of
Table. I. Jumping significantly improves the robot’s traversal
speed in these terrains, resulting in more than 2 times
speedup compared to the walking gait [15]. In addition, con-
tinuous jumping is important for these terrains with repeated
discontinuities. While prior works [9, 10] have demonstrated
high-performance single-step jumps, these results do not
generalize to continuous jumps, which requires accurate and
robust motion control over long horizons.

To test the generalizability of our framework, we deploy
our framework on 4 real-world terrains of different geome-
tries and materials (Fig. 1(c)). Our framework performs well
on 3 of them with a success rate of 100%. The only exception
is the staircase on the top-right of Fig. 1(c), where the robot
achieved a success rate of 20%. This staircase features a
unique geometry with disconnected planked steps, which is
not seen during training. Therefore, both the motion policy



Fig. 7: Key frames and the estimated heightmap of the robot
jumping over a 60cm step (left) and a 80cm gap (right).

Fig. 8: The motion policy plans different foot placements
for different gap widths. Top: For narrower gaps, the robot
jumps over the gap directly. Bottom: for wider gaps, the
robot lands on the ground and jumps over the gap again.

and the heightmap predictor had difficulty recognizing and
reacting to this stair case.

C. High-performance Jumping over a Single Discontinuity

To further validate the capability of our framework, we
test our framework in manually constructed terrains with a
single discontinuity, including a vertical step or a horizontal
gap (Fig. 7). Our framework handles these terrains well, and
can cross horizontal gaps up to 80cm and climb vertical steps
up to 60cm. We further visualize the estimated heightmap
and the robot pose in Fig. 7. Using only proprioception and
ego-centric depth image, the heightmap predictor accurately
estimates the terrain shape with small contact errors. This
jumping performance matches or even exceeds the perfor-
mance of prior works on similar-sized robots (Table. I),
even though our hardware platform, the Go1 Robot [4], has
weaker motor outputs compared to the prior platform (A1).

D. Emergent Foot and Body Motion Planning

As the core of our framework, the motion policy learns
versatile body and foot motion planning based on perceived
terrain. For example, the motion policy plans different
foot placements when jumping over gaps of different sizes
(Fig. 8), from single-step jumping for narrower gaps to two-
step jumping with intermediate landing for wider gaps. The
motion policy also plans different body pitch trajectories
when jumping on steps of different heights (Fig. 9), and
prefers larger pitch angles for higher steps.

E. Ablation Study

To validate the design choices of our framework, we
perform an ablation study, and test the simulation and real-
world performance of our frameworks and the baselines on
a 14-step stair case (Fig. 10). We run each baseline 5 times,
and report the number of steps reached before failure. Most
baselines perform well in simulation, and complete the entire
14-step staircase. One exception is the baseline where the
motion policy is trained without heightmap randomization

Fig. 9: The motion policy plans different body pitch trajecto-
ries when jumping over different step heights. The markers
indicates the air phase of the bounding gait (Fig. 4).

0 2 4 6 8 10 12 14
Num Steps Completed

Imitation Learning

No Height Rand

No Feedback

No LL Reward

No SysID

Ours

Sim
Real

Fig. 10: The number of steps before failure (over 5 trials) in
simulation and in the real world on a 14-step staircase.

(No Height Rand). While this baseline can jump well with
the ground-truth heightmap, it cannot keep a similar per-
formance even with small errors in heightmap estimation.
Another exception is the baseline where the stance leg does
not use the feedback controller (No Feedback). We find that
the robot cannot track accurate body orientation changes, and
cannot perform well on vertical jumps, which is consistent
with prior observations (Fig. 5).

While the rest of the baselines completed the entire 14-step
staircases in simulation, their performances drop significantly
when transferred to the real world. Without the heightmap as
the intermediate terrain representation, the imitation learning
baseline, which directly imitates the motion policy’s actions
from depth images, cannot jump more than 2 staircases in
the real world due to perception noise. Without the low-level
motion tracking reward, the No LL Reward baseline manages
to jump for a few steps in the real world, but eventually falls
over. Lastly, without knowledge of the sensor and actuator
characteristics, the ”No SysID” baseline jumps very fast in
the real world and crashes into the stair edges, likely due to
its unawareness of motor saturation.

IX. CONCLUSION

In this work, we present a hierarchical framework for
agile continuous jumping in discontinuous terrains. Using
our framework, a quadrupedal robot achieves animal-like
high-speed jumping on stairs and stepping stones for the
first time, and outperforms baselines in various other parkour
tasks. One limitation of our framework is that the robot
motion is limited to the sagittal plane, and does not support
sideways or turning motions. Another limitation is that our
framework follows a fixed directional command, and does
not strategically plan a path to reach the destination. In future
work, we plan to address these limitations by expanding the
scope of the current training pipeline, and achieve versatile,
goal-oriented agile locomotion in complex terrains.



REFERENCES

[1] ANYbotics, “Anymal: Autonomous legged robot,”
Product Information, 2020. [Online]. Available: https:
//www.anybotics.com/anymal

[2] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M.
Wensing, and S. Kim, “Mit cheetah 3: Design and
control of a robust, dynamic quadruped robot,” in
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 2245–
2252.

[3] “A1 Website,” 2020. [Online]. Available: https:
//www.unitree.com/products/a1/

[4] “Go1 Website,” 2021. [Online]. Available: https:
//www.unitree.com/products/go1/

[5] C. Nguyen, L. Bao, and Q. Nguyen, “Continuous jump-
ing for legged robots on stepping stones via trajectory
optimization and model predictive control,” in 2022
IEEE 61st Conference on Decision and Control (CDC).
IEEE, 2022, pp. 93–99.

[6] A. W. Winkler, C. D. Bellicoso, M. Hutter, and
J. Buchli, “Gait and trajectory optimization for legged
systems through phase-based end-effector parameteri-
zation,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1560–1567, 2018.

[7] S. Gilroy, D. Lau, L. Yang, E. Izaguirre, K. Biermayer,
A. Xiao, M. Sun, A. Agrawal, J. Zeng, Z. Li et al.,
“Autonomous navigation for quadrupedal robots with
optimized jumping through constrained obstacles,” in
2021 IEEE 17th International Conference on Automa-
tion Science and Engineering (CASE). IEEE, 2021,
pp. 2132–2139.

[8] Q. Nguyen, M. J. Powell, B. Katz, J. Di Carlo, and
S. Kim, “Optimized jumping on the mit cheetah 3
robot,” in 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019, pp. 7448–7454.

[9] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Ex-
treme parkour with legged robots,” arXiv preprint
arXiv:2309.14341, 2023.

[10] Z. Zhuang, Z. Fu, J. Wang, C. G. Atkeson, S. Schwert-
feger, C. Finn, and H. Zhao, “Robot parkour learning,”
in CoRL 2023, 2023.

[11] K. Caluwaerts, A. Iscen, J. C. Kew, W. Yu,
T. Zhang, D. Freeman, K.-H. Lee, L. Lee, S. Saliceti,
V. Zhuang et al., “Barkour: Benchmarking animal-
level agility with quadruped robots,” arXiv preprint
arXiv:2305.14654, 2023.

[12] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal
parkour: Learning agile navigation for quadrupedal
robots,” arXiv preprint arXiv:2306.14874, 2023.

[13] X. B. Peng, G. Berseth, and M. Van de Panne, “Dy-
namic terrain traversal skills using reinforcement learn-
ing,” ACM Transactions on Graphics (TOG), vol. 34,
no. 4, pp. 1–11, 2015.

[14] C. Nguyen and Q. Nguyen, “Contact-timing and trajec-
tory optimization for 3d jumping on quadruped robots.
arxiv. 10.48550,” arXiv preprint ARXIV.2110.06764,

2021.
[15] A. Agarwal, A. Kumar, J. Malik, and D. Pathak,

“Legged locomotion in challenging terrains using ego-
centric vision,” in Conference on Robot Learning.
PMLR, 2023, pp. 403–415.

[16] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai,
D. Hafner, S. Bohez, and V. Vanhoucke, “Sim-to-real:
Learning agile locomotion for quadruped robots,” in
Proceedings of Robotics: Science and Systems, Pitts-
burgh, Pennsylvania, June 2018.

[17] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid
motor adaptation for legged robots,” Robotics: Science
and Systems, 2021.

[18] Y. Yang, G. Shi, X. Meng, W. Yu, T. Zhang, J. Tan,
and B. Boots, “Cajun: Continuous adaptive jumping
using a learned centroidal controller,” arXiv preprint
arXiv:2306.09557, 2023.

[19] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt,
and S. Kim, “Dynamic locomotion in the mit chee-
tah 3 through convex model-predictive control,” in
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1–9.

[20] D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim,
“Highly dynamic quadruped locomotion via whole-
body impulse control and model predictive control,”
arXiv preprint arXiv:1909.06586, 2019.

[21] T. Horvat, K. Melo, and A. J. Ijspeert, “Model pre-
dictive control based framework for com control of
a quadruped robot,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 3372–3378.

[22] F. Jenelten, J. Hwangbo, F. Tresoldi, C. D. Belli-
coso, and M. Hutter, “Dynamic locomotion on slippery
ground,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4170–4176, 2019.

[23] O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Cald-
well, and C. Semini, “Mpc-based controller with terrain
insight for dynamic legged locomotion,” in 2020 IEEE
International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 2436–2442.

[24] Y. Ding, A. Pandala, and H.-W. Park, “Real-time model
predictive control for versatile dynamic motions in
quadrupedal robots,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp.
8484–8490.

[25] C. Gehring, S. Coros, M. Hutter, C. D. Bellicoso,
H. Heijnen, R. Diethelm, M. Bloesch, P. Fankhauser,
J. Hwangbo, M. Hoepflinger et al., “Practice makes
perfect: An optimization-based approach to controlling
agile motions for a quadruped robot,” IEEE Robotics &
Automation Magazine, vol. 23, no. 1, pp. 34–43, 2016.

[26] Z. Song, L. Yue, G. Sun, Y. Ling, H. Wei, L. Gui, and
Y.-H. Liu, “An optimal motion planning framework for
quadruped jumping,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
IEEE, 2022, pp. 11 366–11 373.

[27] A. Pandala, R. T. Fawcett, U. Rosolia, A. D. Ames,



and K. A. Hamed, “Robust predictive control for
quadrupedal locomotion: Learning to close the gap be-
tween reduced-and full-order models,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 6622–6629,
2022.

[28] H. Li and P. M. Wensing, “Cafe-mpc: A cascaded-
fidelity model predictive control framework with
tuning-free whole-body control,” arXiv preprint
arXiv:2403.03995, 2024.

[29] R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter,
“Feedback mpc for torque-controlled legged robots,” in
2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 4730–4737.

[30] S. Qi, W. Lin, Z. Hong, H. Chen, and W. Zhang,
“Perceptive autonomous stair climbing for quadrupedal
robots,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2021,
pp. 2313–2320.

[31] H.-W. Park, P. M. Wensing, and S. Kim, “Jumping
over obstacles with mit cheetah 2,” Robotics and Au-
tonomous Systems, vol. 136, p. 103703, 2021.

[32] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and
M. Hutter, “Perceptive locomotion through nonlin-
ear model-predictive control,” IEEE Transactions on
Robotics, vol. 39, no. 5, pp. 3402–3421, 2023.

[33] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and
P. Agrawal, “Rapid locomotion via reinforcement learn-
ing,” arXiv preprint arXiv:2205.02824, 2022.

[34] G. B. Margolis and P. Agrawal, “Walk these ways: Tun-
ing robot control for generalization with multiplicity of
behavior,” in Conference on Robot Learning. PMLR,
2023, pp. 22–31.

[35] A. Agarwal, A. Kumar, J. Malik, and D. Pathak,
“Legged locomotion in challenging terrains using ego-
centric vision,” arXiv preprint arXiv:2211.07638, 2022.

[36] L. Smith, J. C. Kew, T. Li, L. Luu, X. B. Peng, S. Ha,
J. Tan, and S. Levine, “Learning and adapting agile
locomotion skills by transferring experience,” arXiv
preprint arXiv:2304.09834, 2023.

[37] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi,
“Agile But Safe: Learning Collision-Free High-Speed
Legged Locomotion,” in Proceedings of Robotics: Sci-
ence and Systems, Delft, Netherlands, July 2024.

[38] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu,
K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. All-
shire, A. Handa, and G. State, “Isaac gym: High
performance gpu-based physics simulation for robot
learning,” 2021.

[39] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun,
and M. Hutter, “Learning robust perceptive locomotion
for quadrupedal robots in the wild,” Science Robotics,
vol. 7, no. 62, p. eabk2822, 2022.

[40] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne,
“Allsteps: curriculum-driven learning of stepping stone
skills,” in Computer Graphics Forum, vol. 39, no. 8.
Wiley Online Library, 2020, pp. 213–224.

[41] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu,

E. Coumans, S. Ha, J. Tan, and T. Zhang, “Visual-
locomotion: Learning to walk on complex terrains with
vision,” in 5th Annual Conference on Robot Learning,
2021.

[42] X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar,
Y. Zhu, B. Babich, and A. Garg, “Learning a contact-
adaptive controller for robust, efficient legged locomo-
tion,” arXiv preprint arXiv:2009.10019, 2020.

[43] Z. Xie, X. Da, B. Babich, A. Garg, and M. van de
Panne, “Glide: Generalizable quadrupedal locomotion
in diverse environments with a centroidal model,” arXiv
preprint arXiv:2104.09771, 2021.

[44] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots,
“Fast and efficient locomotion via learned gait tran-
sitions,” in Conference on Robot Learning. PMLR,
2022, pp. 773–783.

[45] Y. Yang, X. Meng, W. Yu, T. Zhang, J. Tan, and
B. Boots, “Continuous versatile jumping using learned
action residuals,” arXiv preprint arXiv:2304.08663,
2023.

[46] G. Bellegarda and Q. Nguyen, “Robust quadruped
jumping via deep reinforcement learning,” arXiv
preprint arXiv:2011.07089, 2020.

[47] S. Ross, G. Gordon, and D. Bagnell, “A reduction
of imitation learning and structured prediction to no-
regret online learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceed-
ings, 2011, pp. 627–635.

[48] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning
to walk in minutes using massively parallel deep rein-
forcement learning,” in Conference on Robot Learning.
PMLR, 2022, pp. 91–100.

[49] M. H. Raibert, Legged robots that balance. MIT press,
1986.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga
et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information
processing systems, vol. 32, 2019.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.


